Полупроводниковые лазеры (КПД > 90%)
В последние годы интенсивно развиваются работы по созданию полупроводниковых источников когерентного излучения — полупроводниковых лазеров, которые открывают возможность непосредственного преобразования энергии электрического тока в энергию когерентного излучения.
На рис. а сплошной линией показана кривая распределения электронов, отвечающая равновесному состоянию, пунктиром — неравновесному состоянию, при котором концентрация электронов в зоне проводимости и дырок в валентной зоне выше равновесной. Заполнение зон электронами, соответствующее такому инверсионному состоянию, показано на рис. б. Особенность его заключена в том, что кванты света с энергией, равной ширине запрещенной зоны, поглощаться системой не могут. Поглощение такого кванта должно сопровождаться переводом электрона с верхнего уровня валентной зоны на нижний уровень зоны проводимости. Так как на верхнем уровне валентной зоны электронов практически нет, а на нижнем уровне зоны проводимости нет свободных мест, то вероятность подобного процесса весьма низка. Это создает благоприятные условия для протекания стимулированного излучения и нарастания фотонной лавины. Квант света стимулирует рекомбинацию электрона и дырки (n-переход), сопровождающуюся рождением точно такого же кванта. Так как эти кванты практически не поглощаются системой, то в дальнейшем они оба участвуют в возбуждении стимулированного излучения, порождая два новых кванта, и т. д. Для того чтобы заставить один и тот же фотон участвовать в возбуждении стимулированного излучения многократно, на противоположных стенках рабочего тела лазера помещают строго параллельные одно другому зеркала (рис. в), которые отражают падающие на них фотоны и возвращают их в рабочий объем лазера. Усилению подвергаются только те фотоны, которые движутся практически строго вдоль оси, так как только эти фотоны испытывают многократные отражения от зеркал. Все другие фотоны выбывают из рабочего объема либо сразу, либо после незначительного числа отражений. В результате возникает остронаправленное излучение вдоль оси, характеризующееся высокой степенью монохроматичности.
Полупроводниковые лазеры обладают высоким к. п. д., который приближается к 100%. Другим замечательным свойством полупроводниковых лазеров является возможность прямой модуляции когерентного излучения изменением тока, текущего через p-n-переход. Это позволяет применять полупроводниковые лазеры для целей связи и телевидения.