Нелинейные электрические цепи


Нелинейные электрические цепи - стр. 9


ми, определяемыми графически.

1.3.          ВАХ  биполярных транзисторов

 

Параметры биполярного транзистора (БТ) в режиме переменного сигнала называются дифференциальными. Они выведены из теории четырехполюсников в предположении слабых по амплитуде сигналов невысокой частоты (эти величин индивидуальны для каждого БТ).

Биполярный транзистор имеет семейства статических характеристик: входные и выходные. Для расчета  динамического режима используются дифференциальные проводимости, уравнения которых для эквивалентной схемы с генераторами тока, имеют вид:

Im1=g11Um1+ g12Um2;    Im2=g21 Um1+g22Um2,           (1.8)

где:

Im1 и Um1  - амплитуды входного  тока и входного напряжения, соответственно;

Im2 и Um2  - амплитуды выходного  тока и выходного напряжения, соответственно;

g11 - входная  проводимость;

g22 - выходная  проводимость;

g12 – проводимость обратной связи;

g21 – проводимость управления (крутизна).

Уравнения (1.8) показывают, что входной ток Im1 складывается  из тока, созданного входным напряжением Um1  на элементе схемы g11, и тока, возникающего во входной цепи от напряжения Um2 за счет обратной связи. Выходной же ток Im2 складывается из усиленного тока: g21 Um1 и тока,  создаваемого на элементе схемы g22 напряжением  Um2.   Таким образом, g21 Um1  -  ток, учитывающий  усиление БТ;  а

g12 Um2  -  ток, учитывающий обратную связь в БТ.

Графическим методом можно вычислить дифференциальные проводимости: g11  и  g12  по входным ВАХ, а g21  и  g22  -  по выходным ВАХ.  В зависимости от режима работы и требуемой точности каждая из проводимостей может быть динамической или средней.

  Динамическая проводимость:

gi =

[Umaxcos(
t +
u)]/
Imaxcos(
t +
i).

  Средняя проводимость:

gср = Imax. ср еj

u /Umax  еj
i                        

  Разложение в ряд Тейлора до третьего  члена:

 gi = g0 + g/ (u–u0) +

g//(u–u0)2,                                           

где:

g0 –  статическая проводимость (в точке покоя);




Начало  Назад  Вперед



Книжный магазин