Теория электрической связи (II)


Теория электрической связи - часть 3


.

Случайные процессы называют стационарными в широком смысле, если выполняются следующие условия:

 

,

,

, где ? = t2 – t1

Очевидно, что стационарность СП в узком смысле влечет его стационарность в широком смысле, но не наоборот.

Некоторые свойства корреляционной функции СП:

1.

2.

Доказательство:

,

        откуда следует вышеуказанное неравенство

3. Корреляционная функция характеризует статистическую связь сечений СП (внутри процесса). Если связи между сечениями

 и
 нет (сечения статистически независимы), то
.

         Доказательство:

.

Отсутствие связи влечет отсутствие корреляции, но не наоборот. Обратное утверждение справедливо лишь в случае нормального (гауссовского) процесса.

Нормальным называют СП, у которого одномерная плотность вероятности имеет вид

,

где

,
,

а любая n-мерная плотность вероятности описывается выражением

,

где An, cij, ai, aj – константы, определяемые выбором сечений t1,t2,,,tn.

4. Корреляционная функция стационарного случайного процесса является четной

.

Доказательство:

.

Подставляя

, получим

.

5. Чтобы абстрагироваться от дисперсии и учитывать только связи внутри СП удобно пользоваться нормированной функцией корреляции (коэффициентом корреляции)

.

Очевидно, что

.

6. Интервал корреляции – грубую числовую оценку связи внутри СП – чаще всего определяют методом равновеликого прямоугольника

.

7. Взаимная корреляционная функция двух процессов X(t) и Y(t)

.

8. Корреляционная функция суммы независимых случайных процессов

 есть сумма корреляционных функций каждого из слагаемых СП в отдельности

Доказательство:

.

Вместо усреднения по множеству реализаций случайного процесса можно ввести его усреднение по времени, определяя:

-  постоянную составляющую  СП,

-  переменную составляющую СП,

 

-  мощность переменной состав-

   ляющей СП.

 

Нетрудно видеть, что эти характеристики являются случайными величинами, не зависящими от времени.

Случайные стационарные процессы называют эргодическими, если их усреднение по множеству и по времени приводит к одинаковым результатам:




Начало  Назад  Вперед